Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Mol Genet Metab ; 139(2): 107605, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37207470

RESUMO

Pyruvate carboxylase (PC) deficiency is a rare autosomal recessive mitochondrial neurometabolic disorder of energy deficit resulting in high morbidity and mortality, with limited therapeutic options. The PC homotetramer has a critical role in gluconeogenesis, anaplerosis, neurotransmitter synthesis, and lipogenesis. The main biochemical and clinical findings in PC deficiency (PCD) include lactic acidosis, ketonuria, failure to thrive, and neurological dysfunction. Use of the anaplerotic agent triheptanoin on a limited number of individuals with PCD has had mixed results. We expand on the potential utility of triheptanoin in PCD by examining the clinical, biochemical, molecular, and health-related quality-of-life (HRQoL) findings in a cohort of 12 individuals with PCD (eight with Type A and two each with Types B and C) treated with triheptanoin ranging for 6 days to about 7 years. The main endpoints were changes in blood lactate and HRQoL scores, but collection of useful data was limited to about half of subjects. An overall trend of lactate reduction with time on triheptanoin was noted, but with significant variability among subjects and only one subject reaching close to statistical significance for this endpoint. Parent reported HRQoL assessments with treatment showed mixed results, with some subjects showing no change, some improvement, and some worsening of overall scores. Subjects with buried amino acids in the pyruvate carboxyltransferase domain of PC that undergo destabilizing replacements may be more likely to respond (with lactate reduction or HRQoL improvement) to triheptanoin compared to those with replacements that disrupt tetramerization or subunit-subunit interface contacts. The reason for this difference is unclear and requires further validation. We observed significant variability but an overall trend of lactate reduction with time on triheptanoin and mixed parent reported outcome changes by HRQoL assessments for subjects with PCD on long-term triheptanoin. The mixed results noted with triheptanoin therapy in this study could be due to endpoint data limitation, variability of disease severity between subjects, limitation of the parent reported HRQoL tool, or subject genotype variability. Alternative designed trials and more study subjects with PCD will be needed to validate important observations from this work.


Assuntos
Doença da Deficiência de Piruvato Carboxilase , Humanos , Doença da Deficiência de Piruvato Carboxilase/tratamento farmacológico , Doença da Deficiência de Piruvato Carboxilase/genética , Triglicerídeos , Mitocôndrias , Lactatos , Piruvato Carboxilase/genética , Piruvato Carboxilase/química
2.
Brain ; 146(4): 1373-1387, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-36200388

RESUMO

The corpus callosum is a bundle of axon fibres that connects the two hemispheres of the brain. Neurodevelopmental disorders that feature dysgenesis of the corpus callosum as a core phenotype offer a valuable window into pathology derived from abnormal axon development. Here, we describe a cohort of eight patients with a neurodevelopmental disorder characterized by a range of deficits including corpus callosum abnormalities, developmental delay, intellectual disability, epilepsy and autistic features. Each patient harboured a distinct de novo variant in MYCBP2, a gene encoding an atypical really interesting new gene (RING) ubiquitin ligase and signalling hub with evolutionarily conserved functions in axon development. We used CRISPR/Cas9 gene editing to introduce disease-associated variants into conserved residues in the Caenorhabditis elegans MYCBP2 orthologue, RPM-1, and evaluated functional outcomes in vivo. Consistent with variable phenotypes in patients with MYCBP2 variants, C. elegans carrying the corresponding human mutations in rpm-1 displayed axonal and behavioural abnormalities including altered habituation. Furthermore, abnormal axonal accumulation of the autophagy marker LGG-1/LC3 occurred in variants that affect RPM-1 ubiquitin ligase activity. Functional genetic outcomes from anatomical, cell biological and behavioural readouts indicate that MYCBP2 variants are likely to result in loss of function. Collectively, our results from multiple human patients and CRISPR gene editing with an in vivo animal model support a direct link between MYCBP2 and a human neurodevelopmental spectrum disorder that we term, MYCBP2-related developmental delay with corpus callosum defects (MDCD).


Assuntos
Proteínas de Caenorhabditis elegans , Deficiência Intelectual , Animais , Humanos , Corpo Caloso/patologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Deficiência Intelectual/genética , Fenótipo , Ligases/genética , Ubiquitinas/genética , Agenesia do Corpo Caloso/genética , Agenesia do Corpo Caloso/patologia , Ubiquitina-Proteína Ligases/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo
3.
Mov Disord ; 37(7): 1547-1554, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35722775

RESUMO

BACKGROUND: Most reported patients carrying GNAO1 mutations showed a severe phenotype characterized by early-onset epileptic encephalopathy and/or chorea. OBJECTIVE: The aim was to characterize the clinical and genetic features of patients with mild GNAO1-related phenotype with prominent movement disorders. METHODS: We included patients diagnosed with GNAO1-related movement disorders of delayed onset (>2 years). Patients experiencing either severe or profound intellectual disability or early-onset epileptic encephalopathy were excluded. RESULTS: Twenty-four patients and 1 asymptomatic subject were included. All patients showed dystonia as prominent movement disorder. Dystonia was focal in 1, segmental in 6, multifocal in 4, and generalized in 13. Six patients showed adolescence or adulthood-onset dystonia. Seven patients presented with parkinsonism and 3 with myoclonus. Dysarthria was observed in 19 patients. Mild and moderate ID were present in 10 and 2 patients, respectively. CONCLUSION: We highlighted a mild GNAO1-related phenotype, including adolescent-onset dystonia, broadening the clinical spectrum of this condition. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Distonia , Distúrbios Distônicos , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP , Transtornos dos Movimentos , Transtornos Parkinsonianos , Distonia/genética , Distúrbios Distônicos/genética , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Humanos , Transtornos dos Movimentos/genética , Transtornos Parkinsonianos/genética , Fenótipo
4.
Hum Genet ; 141(8): 1355-1369, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35039925

RESUMO

NAA10 is the catalytic subunit of the N-terminal acetyltransferase complex, NatA, which is responsible for N-terminal acetylation of nearly half the human proteome. Since 2011, at least 21 different NAA10 missense variants have been reported as pathogenic in humans. The clinical features associated with this X-linked condition vary, but commonly described features include developmental delay, intellectual disability, cardiac anomalies, brain abnormalities, facial dysmorphism and/or visual impairment. Here, we present eight individuals from five families with five different de novo or inherited NAA10 variants. In order to determine their pathogenicity, we have performed biochemical characterisation of the four novel variants c.16G>C p.(A6P), c.235C>T p.(R79C), c.386A>C p.(Q129P) and c.469G>A p.(E157K). Additionally, we clinically describe one new case with a previously identified pathogenic variant, c.384T>G p.(F128L). Our study provides important insight into how different NAA10 missense variants impact distinct biochemical functions of NAA10 involving the ability of NAA10 to perform N-terminal acetylation. These investigations may partially explain the phenotypic variability in affected individuals and emphasise the complexity of the cellular pathways downstream of NAA10.


Assuntos
Deficiência Intelectual , Acetiltransferase N-Terminal A , Acetiltransferase N-Terminal E , Acetilação , Genes Ligados ao Cromossomo X , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Acetiltransferase N-Terminal A/genética , Acetiltransferase N-Terminal A/metabolismo , Acetiltransferase N-Terminal E/genética , Acetiltransferase N-Terminal E/metabolismo
5.
Case Rep Ophthalmol Med ; 2021: 1345937, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34664020

RESUMO

Infantile Refsum disease is a rare peroxisomal biogenesis disorder characterized by impaired alpha-oxidation and accumulation of phytanic acid in the tissues. Patients often present with fundus changes resembling retinitis pigmentosa, developmental delay, sensorineural hearing loss, ataxia, and hepatomegaly. Traditionally, mainstay treatment for this condition has been a phytanic acid-restricted diet, although supplementation with either docosahexaenoic acid or cholic acid has rarely been described in the literature. We present a case of infantile Refsum disease in a child with retinitis pigmentosa-like ocular findings, sensorineural hearing loss, and self-resolving hepatic disease, who developed novel findings of macular edema refractory to carbonic anhydrase inhibitors. We describe management with a phytanic acid-restricted diet and combination docosahexaenoic acid, and cholic acid therapy, which helped to limit progression of her disease.

6.
J Clin Endocrinol Metab ; 106(12): 3413-3427, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34383079

RESUMO

CONTEXT: CPE encodes carboxypeptidase E, an enzyme that converts proneuropeptides and propeptide hormones to bioactive forms. It is widely expressed in the endocrine and central nervous system. To date, 4 individuals from 2 families with core clinical features including morbid obesity, neurodevelopmental delay, and hypogonadotropic hypogonadism, harboring biallelic loss-of-function (LoF) CPE variants, have been reported. OBJECTIVE: We describe 4 affected individuals from 3 unrelated consanguineous families, 2 siblings of Syrian, 1 of Egyptian, and 1 of Pakistani descent, all harboring novel homozygous CPE LoF variants. METHODS: After excluding Prader-Willi syndrome (PWS), exome sequencing was performed in both Syrian siblings. The variants identified in the other 2 individuals were reported as research variants in a large-scale exome study and in the ClinVar database. Computational modeling of all possible missense alterations allowed assessing CPE tolerance to missense variants. RESULTS: All affected individuals were severely obese with neurodevelopmental delay and other endocrine anomalies. Three individuals from 2 families shared the same CPE homozygous truncating variant c.361C > T, p.(Arg121*), while the fourth carried the c.994del, p.(Ser333Alafs*22) variant. Comparison of clinical features with previously described cases and standardization according to the Human Phenotype Ontology terms indicated a recognizable clinical phenotype, which we termed Blakemore-Durmaz-Vasileiou (BDV) syndrome. Computational analysis indicated high conservation of CPE domains and intolerance to missense changes. CONCLUSION: Biallelic truncating CPE variants are associated with BDV syndrome, a clinically recognizable monogenic recessive syndrome with childhood-onset obesity, neurodevelopmental delay, hypogonadotropic hypogonadism, and hypothyroidism. BDV syndrome resembles PWS. Our findings suggest missense variants may also be clinically relevant.


Assuntos
Carboxipeptidase H/genética , Hipogonadismo/patologia , Hipotireoidismo/patologia , Mutação com Perda de Função , Transtornos do Neurodesenvolvimento/patologia , Obesidade/patologia , Síndrome de Prader-Willi/diagnóstico , Adolescente , Alelos , Criança , Feminino , Humanos , Hipogonadismo/genética , Hipotireoidismo/genética , Recém-Nascido , Masculino , Transtornos do Neurodesenvolvimento/genética , Obesidade/genética , Linhagem , Prognóstico , Síndrome
7.
Ann Neurol ; 90(2): 274-284, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34185323

RESUMO

OBJECTIVE: The MAST family of microtubule-associated serine-threonine kinases (STKs) have distinct expression patterns in the developing and mature human and mouse brain. To date, only MAST1 has been conclusively associated with neurological disease, with de novo variants in individuals with a neurodevelopmental disorder, including a mega corpus callosum. METHODS: Using exome sequencing, we identify MAST3 missense variants in individuals with epilepsy. We also assess the effect of these variants on the ability of MAST3 to phosphorylate the target gene product ARPP-16 in HEK293T cells. RESULTS: We identify de novo missense variants in the STK domain in 11 individuals, including 2 recurrent variants p.G510S (n = 5) and p.G515S (n = 3). All 11 individuals had developmental and epileptic encephalopathy, with 8 having normal development prior to seizure onset at <2 years of age. All patients developed multiple seizure types, 9 of 11 patients had seizures triggered by fever and 9 of 11 patients had drug-resistant seizures. In vitro analysis of HEK293T cells transfected with MAST3 cDNA carrying a subset of these patient-specific missense variants demonstrated variable but generally lower expression, with concomitant increased phosphorylation of the MAST3 target, ARPP-16, compared to wild-type. These findings suggest the patient-specific variants may confer MAST3 gain-of-function. Moreover, single-nuclei RNA sequencing and immunohistochemistry shows that MAST3 expression is restricted to excitatory neurons in the cortex late in prenatal development and postnatally. INTERPRETATION: In summary, we describe MAST3 as a novel epilepsy-associated gene with a potential gain-of-function pathogenic mechanism that may be primarily restricted to excitatory neurons in the cortex. ANN NEUROL 2021;90:274-284.


Assuntos
Epilepsia/diagnóstico por imagem , Epilepsia/genética , Variação Genética/genética , Proteínas Associadas aos Microtúbulos/genética , Proteínas Serina-Treonina Quinases/genética , Adolescente , Adulto , Sequência de Aminoácidos , Animais , Criança , Estudos de Coortes , Epilepsia/metabolismo , Feminino , Seguimentos , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/biossíntese , Proteínas Serina-Treonina Quinases/biossíntese , Adulto Jovem
8.
Genet Med ; 23(2): 352-362, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33106617

RESUMO

PURPOSE: Neurodevelopmental disorders (NDD) caused by protein phosphatase 2A (PP2A) dysfunction have mainly been associated with de novo variants in PPP2R5D and PPP2CA, and more rarely in PPP2R1A. Here, we aimed to better understand the latter by characterizing 30 individuals with de novo and often recurrent variants in this PP2A scaffolding Aα subunit. METHODS: Most cases were identified through routine clinical diagnostics. Variants were biochemically characterized for phosphatase activity and interaction with other PP2A subunits. RESULTS: We describe 30 individuals with 16 different variants in PPP2R1A, 21 of whom had variants not previously reported. The severity of developmental delay ranged from mild learning problems to severe intellectual disability (ID) with or without epilepsy. Common features were language delay, hypotonia, and hypermobile joints. Macrocephaly was only seen in individuals without B55α subunit-binding deficit, and these patients had less severe ID and no seizures. Biochemically more disruptive variants with impaired B55α but increased striatin binding were associated with profound ID, epilepsy, corpus callosum hypoplasia, and sometimes microcephaly. CONCLUSION: We significantly expand the phenotypic spectrum of PPP2R1A-related NDD, revealing a broader clinical presentation of the patients and that the functional consequences of the variants are more diverse than previously reported.


Assuntos
Deficiência Intelectual , Microcefalia , Transtornos do Neurodesenvolvimento , Humanos , Deficiência Intelectual/genética , Hipotonia Muscular , Transtornos do Neurodesenvolvimento/epidemiologia , Transtornos do Neurodesenvolvimento/genética , Proteína Fosfatase 2/genética , Fatores de Transcrição
9.
Genet Med ; 22(10): 1718-1722, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32555416

RESUMO

PURPOSE: To assess the utilization of genetics on the United States Medical Licensing Examination (USMLE®). METHODS: A team of clinical genetics educators performed an analysis of the representation of genetics content on a robust sample of recent Step 1, Step 2 Clinical Knowledge (CK), and Step 3 examination forms. The content of each question was mapped to curriculum recommendations from the peer reviewed Association of Professors of Human and Medical Genetics white paper, Medical School Core Curriculum in Genetics, and the USMLE Content Outline. RESULTS: The committee identified 13.4%, 10.4%, and 4.4% of Steps 1, 2 and 3 respectively, as having genetics content. The genetics content of the exams became less pertinent to the questions from Step 1 to 3, with decreasing genetics content by exam and increasing percentages of questions identified as having genetics content in the distractors only. CONCLUSION: The current distribution of genetics in USMLE licensing examinations reflects traditional curricular approaches with genetics as a basic science course in the early years of medical school and de-emphasizes clinical relevance of the field. These observations support the notion that further integration is required to move genetics into the clinical curriculum of medical schools and the clinical content of USMLE Step exams.


Assuntos
Educação de Graduação em Medicina , Educação Médica , Competência Clínica , Currículo , Avaliação Educacional , Genômica , Humanos , Licenciamento em Medicina , Estados Unidos
10.
Genet Med ; 22(5): 857-866, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31949312

RESUMO

PURPOSE: Four patients with Saul-Wilson syndrome were reported between 1982 and 1994, but no additional individuals were described until 2018, when the molecular etiology of the disease was elucidated. Hence, the clinical phenotype of the disease remains poorly defined. We address this shortcoming by providing a detailed characterization of its phenotype. METHODS: Retrospective chart reviews were performed and primary radiographs assessed for all 14 individuals. Four individuals underwent detailed ophthalmologic examination by the same physician. Two individuals underwent gynecologic evaluation. Z-scores for height, weight, head circumference and body mass index were calculated at different ages. RESULTS: All patients exhibited short stature, with sharp decline from the mean within the first months of life, and a final height Z-score between -4 and -8.5 standard deviations. The facial and radiographic features evolved over time. Intermittent neutropenia was frequently observed. Novel findings included elevation of liver transaminases, skeletal fragility, rod-cone dystrophy, and cystic macular changes. CONCLUSIONS: Saul-Wilson syndrome presents a remarkably uniform phenotype, and the comprehensive description of our cohort allows for improved understanding of the long-term morbidity of the condition, establishment of follow-up recommendations for affected individuals, and documentation of the natural history into adulthood for comparison with treated patients, when therapeutics become available.


Assuntos
Nanismo , Adulto , Feminino , Humanos , Fenótipo , Estudos Retrospectivos
11.
Brain ; 143(1): 55-68, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31834374

RESUMO

MN1 encodes a transcriptional co-regulator without homology to other proteins, previously implicated in acute myeloid leukaemia and development of the palate. Large deletions encompassing MN1 have been reported in individuals with variable neurodevelopmental anomalies and non-specific facial features. We identified a cluster of de novo truncating mutations in MN1 in a cohort of 23 individuals with strikingly similar dysmorphic facial features, especially midface hypoplasia, and intellectual disability with severe expressive language delay. Imaging revealed an atypical form of rhombencephalosynapsis, a distinctive brain malformation characterized by partial or complete loss of the cerebellar vermis with fusion of the cerebellar hemispheres, in 8/10 individuals. Rhombencephalosynapsis has no previously known definitive genetic or environmental causes. Other frequent features included perisylvian polymicrogyria, abnormal posterior clinoid processes and persistent trigeminal artery. MN1 is encoded by only two exons. All mutations, including the recurrent variant p.Arg1295* observed in 8/21 probands, fall in the terminal exon or the extreme 3' region of exon 1, and are therefore predicted to result in escape from nonsense-mediated mRNA decay. This was confirmed in fibroblasts from three individuals. We propose that the condition described here, MN1 C-terminal truncation (MCTT) syndrome, is not due to MN1 haploinsufficiency but rather is the result of dominantly acting C-terminally truncated MN1 protein. Our data show that MN1 plays a critical role in human craniofacial and brain development, and opens the door to understanding the biological mechanisms underlying rhombencephalosynapsis.


Assuntos
Anormalidades Múltiplas/genética , Anormalidades Craniofaciais/genética , Deficiência Intelectual/genética , Transtornos do Desenvolvimento da Linguagem/genética , Malformações do Sistema Nervoso/genética , Transativadores/genética , Proteínas Supressoras de Tumor/genética , Anormalidades Múltiplas/diagnóstico por imagem , Adolescente , Artéria Basilar/anormalidades , Artéria Basilar/diagnóstico por imagem , Artérias Carótidas/anormalidades , Artérias Carótidas/diagnóstico por imagem , Vermis Cerebelar/anormalidades , Vermis Cerebelar/diagnóstico por imagem , Cerebelo/anormalidades , Cerebelo/diagnóstico por imagem , Criança , Pré-Escolar , Estudos de Coortes , Hibridização Genômica Comparativa , Anormalidades Craniofaciais/diagnóstico por imagem , Feminino , Fibroblastos/metabolismo , Humanos , Imageamento Tridimensional , Lactente , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Mutação , Malformações do Sistema Nervoso/diagnóstico por imagem , Degradação do RNAm Mediada por Códon sem Sentido , Polimicrogiria/diagnóstico por imagem , Polimicrogiria/genética , RNA-Seq , Reação em Cadeia da Polimerase em Tempo Real , Síndrome , Tomografia Computadorizada por Raios X , Sequenciamento do Exoma , Sequenciamento Completo do Genoma
12.
J Med Genet ; 57(3): 195-202, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31784481

RESUMO

MATERIAL: Linked-read whole genome sequencing (WGS) presents a new opportunity for cost-efficient singleton sequencing in place of traditional trio-based designs while generating informative-phased variants, effective for recessive disorders when parental DNA is unavailable. METHODS: We have applied linked-read WGS to identify novel causes of Meier-Gorlin syndrome (MGORS), a condition recognised by short stature, microtia and patella hypo/aplasia. There are eight genes associated with MGORS to date, all encoding essential components involved in establishing and initiating DNA replication. RESULTS: Our successful phasing of linked-read data led to the identification of biallelic rare variants in four individuals (24% of our cohort) in DONSON, a recently established DNA replication fork surveillance factor. The variants include five novel missense and one deep intronic variant. All were demonstrated to be deleterious to function; the missense variants all disrupted the nuclear localisation of DONSON, while the intronic variant created a novel splice site that generated an out-of-frame transcript with no residual canonical transcript produced. CONCLUSION: Variants in DONSON have previously been associated with extreme microcephaly, short stature and limb anomalies and perinatal lethal microcephaly-micromelia syndrome. Our novel genetic findings extend the complicated spectrum of phenotypes associated with DONSON variants and promote novel hypotheses for the role of DONSON in DNA replication. While our findings reiterate that MGORS is a disorder of DNA replication, the pathophysiology is obviously complex. This successful identification of a novel disease gene for MGORS highlights the utility of linked-read WGS as a successful technology to be considered in the genetic studies of recessive conditions.


Assuntos
Proteínas de Ciclo Celular/genética , Microtia Congênita/genética , Predisposição Genética para Doença , Transtornos do Crescimento/genética , Micrognatismo/genética , Proteínas Nucleares/genética , Patela/anormalidades , Adulto , Alelos , Sequência de Bases/genética , Criança , Microtia Congênita/fisiopatologia , Replicação do DNA/genética , Feminino , Genoma Humano/genética , Transtornos do Crescimento/fisiopatologia , Humanos , Masculino , Micrognatismo/fisiopatologia , Patela/metabolismo , Patela/fisiopatologia , Gravidez
14.
Am J Hum Genet ; 103(4): 553-567, 2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30290151

RESUMO

The conserved oligomeric Golgi (COG) complex is involved in intracellular vesicular transport, and is composed of eight subunits distributed in two lobes, lobe A (COG1-4) and lobe B (COG5-8). We describe fourteen individuals with Saul-Wilson syndrome, a rare form of primordial dwarfism with characteristic facial and radiographic features. All affected subjects harbored heterozygous de novo variants in COG4, giving rise to the same recurrent amino acid substitution (p.Gly516Arg). Affected individuals' fibroblasts, whose COG4 mRNA and protein were not decreased, exhibited delayed anterograde vesicular trafficking from the ER to the Golgi and accelerated retrograde vesicular recycling from the Golgi to the ER. This altered steady-state equilibrium led to a decrease in Golgi volume, as well as morphologic abnormalities with collapse of the Golgi stacks. Despite these abnormalities of the Golgi apparatus, protein glycosylation in sera and fibroblasts from affected subjects was not notably altered, but decorin, a proteoglycan secreted into the extracellular matrix, showed altered Golgi-dependent glycosylation. In summary, we define a specific heterozygous COG4 substitution as the molecular basis of Saul-Wilson syndrome, a rare skeletal dysplasia distinct from biallelic COG4-CDG.


Assuntos
Síndrome do Cromossomo X Frágil/genética , Transporte Proteico/genética , Proteoglicanas/genética , Proteínas de Transporte Vesicular/genética , Adulto , Substituição de Aminoácidos/genética , Animais , Animais Geneticamente Modificados/genética , Linhagem Celular , Criança , Pré-Escolar , Retículo Endoplasmático/genética , Matriz Extracelular/genética , Feminino , Fibroblastos/patologia , Glicosilação , Complexo de Golgi/genética , Heterozigoto , Humanos , Lactente , Masculino , Peixe-Zebra
15.
J Extra Corpor Technol ; 49(1): 64-66, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28298669

RESUMO

The usual indications for extra corporeal membrane oxygenation (ECMO) are for respiratory or cardiac failure. Although continuous renal replacement therapy (CRRT) is frequently used when patients are on ECMO, the need for CRRT as the primary indication for ECMO is rare. A case of a neonate placed onto veno-venous ECMO for the use of CRRT to treat hyperammonemia from propionic acidemia is presented.


Assuntos
Anastomose Cirúrgica/métodos , Oxigenação por Membrana Extracorpórea/métodos , Acidemia Propiônica/terapia , Terapia de Substituição Renal/métodos , Feminino , Humanos , Recém-Nascido , Resultado do Tratamento
16.
Orphanet J Rare Dis ; 10: 99, 2015 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-26289392

RESUMO

BACKGROUND: This paper summarizes the results of a group effort to bring together the worldwide available data on patients who are either homozygotes or compound heterozygotes for mutations in MAT1A. MAT1A encodes the subunit that forms two methionine adenosyltransferase isoenzymes, tetrameric MAT I and dimeric MAT III, that catalyze the conversion of methionine and ATP to S-adenosylmethionine (AdoMet). Subnormal MAT I/III activity leads to hypermethioninemia. Individuals, with hypermethioninemia due to one of the MAT1A mutations that in heterozygotes cause relatively mild and clinically benign hypermethioninemia are currently often being flagged in screening programs measuring methionine elevation to identify newborns with defective cystathionine ß-synthase activity. Homozygotes or compound heterozygotes for MAT1A mutations are less frequent. Some but not all, such individuals have manifested demyelination or other CNS abnormalities. PURPOSE OF THE STUDY: The goals of the present effort have been to determine the frequency of such abnormalities, to find how best to predict whether they will occur, and to evaluate the outcomes of the variety of treatment regimens that have been used. Data have been gathered for 64 patients, of whom 32 have some evidence of CNS abnormalities (based mainly on MRI findings), and 32 do not have such evidence. RESULTS AND DISCUSSION: The results show that mean plasma methionine concentrations provide the best indication of the group into which a given patient will fall: those with means of 800 µM or higher usually have evidence of CNS abnormalities, whereas those with lower means usually do not. Data are reported for individual patients for MAT1A genotypes, plasma methionine, total homocysteine (tHcy), and AdoMet concentrations, liver function studies, results of 15 pregnancies, and the outcomes of dietary methionine restriction and/or AdoMet supplementation. Possible pathophysiological mechanisms that might contribute to CNS damage are discussed, and tentative suggestions are put forth as to optimal management.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/genética , Heterozigoto , Homozigoto , Metionina Adenosiltransferase/genética , Adolescente , Adulto , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Inquéritos e Questionários , Adulto Jovem
17.
J Child Neurol ; 29(1): 88-92, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23155204

RESUMO

The authors report the case of a 4-year-old boy who developed progressive unilateral weakness and developmental delays prior to his diagnosis of classical homocystinuria. Magnetic resonance imaging (MRI) of the brain demonstrated diffuse white matter changes, raising the concern for a secondary diagnosis causing leukoencephalopathy, since classical homocystinuria is not typically associated with these changes. Other inborn errors of the transsulfuration pathway have been reported as causing these changes. Once begun on therapy for his homocystinuria, his neurologic deficits resolved and his delays rapidly improved. Repeat MRI performed one year after instating therapy showed resolution of his white matter abnormalities. This case illustrates the need to consider homocystinuria and other amino acidopathies in the differential diagnosis of childhood white matter diseases and lends weight to the hypothesis that hypermethioninemia may induce white matter changes.


Assuntos
Homocistinúria/complicações , Leucoencefalopatias/etiologia , Pré-Escolar , Imagem de Difusão por Ressonância Magnética , Homocistinúria/diagnóstico , Humanos , Masculino
18.
PLoS One ; 8(10): e76312, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24098473

RESUMO

In many flowering plants individual fruits contain a mixture of half- and full- siblings, reflecting pollination by several fathers. To better understand the mechanisms generating multiple paternity within fruits we present a theoretical framework linking pollen carryover with patterns of pollinator movement. This 'sire profile' model predicts that species with more extensive pollen carryover will have a greater number of mates. It also predicts that flowers on large displays, which are often probed consecutively during a single pollinator visitation sequence, will have a lower effective number of mates. We compared these predictions with observed values for bumble bee-pollinated Mimulus ringens, which has restricted carryover, and hummingbird-pollinated Ipomopsis aggregata, which has extensive carryover. The model correctly predicted that the effective number of mates is much higher in the species with more extensive carryover. This work extends our knowledge of plant mating systems by highlighting mechanisms influencing the genetic composition of sibships.


Assuntos
Flores/fisiologia , Modelos Biológicos , Fenômenos Fisiológicos Vegetais , Polinização , Algoritmos , Animais , Abelhas , Aves , Frutas , Reprodutibilidade dos Testes
19.
J Theor Biol ; 339: 84-92, 2013 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-24036205

RESUMO

Simple models of density-dependent population growth such as the discrete logistic map provide powerful demonstrations of complex population dynamics. Yet it is unclear whether the dynamics observed in such idealized systems would be present, under realistic conditions, in the context of demographic stochasticity, which is well known to exist in finite natural populations. Here, using a set of simple, individual-based models (IBM's) and their population-level iterative map counterparts, we computationally investigate the contribution of demographic stochasticity to density-dependent population dynamics in a simple model of seed production and recruitment. Notably, for a sufficiently large lattice, even in the presence of demographic stochasticity, many of the qualitative features of these idealized maps - including bifurcations - are still present. Demographic stochasticity and the constraints imposed by a finite lattice size appear to produce mixed dynamics that are partially stochastic, yet qualitatively similar to the deterministic models. The mechanistic assumptions and lattice sizes required to generate these dynamics cast doubt on whether they might be observable in annual plant populations. Nevertheless, we cannot rule out the theoretical possibility that such dynamics might be observable in ecological communities having similar mechanistic properties.


Assuntos
Modelos Biológicos , Desenvolvimento Vegetal/fisiologia , Sementes/fisiologia , Ecossistema , Modelos Logísticos , Dinâmica não Linear , Dinâmica Populacional , Processos Estocásticos
20.
JIMD Rep ; 4: 1-4, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23430889

RESUMO

Fabry disease, an X-linked lysosomal storage disorder, is caused by the deficiency of the alpha-galactosidase A enzyme and the progressive accumulation of globotriaosylceramide in vascular endothelial cells. The multi-systemic manifestations of Fabry disease include cardiac, gastrointestinal, renal, and neuropathic complications. Renal dysfunction and ultimately end-stage renal disease occurs in classically affected males and in about 10-15% of female heterozygotes from classically affected families as a result of progressive glycosphingolipid accumulation. We report a case in which a female with a de novo GLA mutation donated a kidney to her sister prior to the diagnosis of symptomatic Fabry disease. The transplant recipient has progressed to graft failure and has been relisted for transplant. This case report demonstrates the need to screen potential kidney transplant donors and recipients for Fabry disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...